Cheat Sheet for comprehensive Data Science Council of America (DASCA) Senior Data Scientist (SDS)

Data Collection & Preprocessing

Data Sources

- Structured Data: Databases, CSV, Excel

- Unstructured Data: Text, Images, Audio

- **APIs**: RESTful, SOAP

- Web Scraping: BeautifulSoup, Scrapy

Data Cleaning

- Missing Values:
- Imputation: Mean, Median, Mode
- Deletion: Rows, Columns
- Outliers:
- Z-Score, IQR
- Visualization: Boxplots, Histograms
- Duplicates:
- Removal: Rows, Columns
- Data Transformation:
- Normalization: Min-Max, Z-Score
- Encoding: One-Hot, Label Encoding

Exploratory Data Analysis (EDA)

Descriptive Statistics

- Central Tendency: Mean, Median, Mode
- **Dispersion**: Range, Variance, Standard Deviation
- **Shape**: Skewness, Kurtosis

Visualization

- **Histograms**: Distribution of single variable

- **Boxplots**: Outliers and quartiles
- **Scatterplots**: Relationship between two variables
- **Heatmaps**: Correlation between variables

Statistical Analysis

Hypothesis Testing

- Types:
- Z-Test, T-Test
- Chi-Square Test
- ANOVA
- Steps:
- Formulate Hypothesis
- Set Significance Level (α)
- Calculate Test Statistic
- Determine P-Value
- Make Decision

Regression Analysis

- **Simple Linear Regression**: $y = \beta 0 + \beta 1x$
- **Multiple Linear Regression**: $y = \beta 0 + \beta 1x1 + \beta 2x2 + ... + \beta nxn$
- Metrics:
- R-Squared
- Adjusted R-Squared
- RMSE, MAE

Machine Learning

Supervised Learning

- Classification:
- Algorithms: Logistic Regression, SVM, Decision Trees, Random Forest, KNN
- Metrics: Accuracy, Precision, Recall, F1-Score, ROC-AUC
- Regression:
- Algorithms: Linear Regression, Ridge, Lasso, Elastic Net
- Metrics: RMSE, MAE, R-Squared

Unsupervised Learning

- Clustering:
- Algorithms: K-Means, Hierarchical, DBSCAN
- Metrics: Silhouette Score, Davies-Bouldin Index
- Dimensionality Reduction:
- Algorithms: PCA, t-SNE, LDA

Model Evaluation

- Cross-Validation:
- K-Fold
- Stratified K-Fold
- Hyperparameter Tuning:
- Grid Search
- Random Search
- Bayesian Optimization

Deep Learning

Neural Networks

- Layers:
- Input, Hidden, Output
- Activation Functions:
- ReLU, Sigmoid, Tanh
- Loss Functions:
- MSE, Cross-Entropy

Convolutional Neural Networks (CNN)

- Layers:
- Convolutional, Pooling, Fully Connected
- Applications:
- Image Classification, Object Detection

Recurrent Neural Networks (RNN)

- Types:

- LSTM, GRU
- Applications:
- Time Series, NLP

Big Data & Distributed Computing

Big Data Technologies

- **Hadoop**: HDFS, MapReduce

- Spark: RDD, DataFrames, MLlib

- NoSQL Databases: MongoDB, Cassandra

Distributed Computing

- Frameworks:
- Apache Spark
- Dask
- Parallel Processing:
- Multiprocessing
- Multithreading

Data Visualization & Reporting

Tools

- Matplotlib: Basic plotting

- **Seaborn**: Statistical plots

- **Plotly**: Interactive plots

- **Tableau**: Business Intelligence

Reporting

- Dashboards:
- Real-time updates
- Interactive elements
- Storytelling:
- Clear narratives
- Visual hierarchy

Ethics & Compliance

Data Privacy

- **GDPR**: General Data Protection Regulation
- HIPAA: Health Insurance Portability and Accountability Act
- Data Anonymization:
- Techniques: Masking, Shuffling

Bias & Fairness

- Types of Bias:
- Selection Bias
- Confirmation Bias
- Mitigation:
- Fairness Metrics
- Algorithmic Audits

Tools & Libraries

Python Libraries

- Data Manipulation: Pandas, NumPy
- Visualization: Matplotlib, Seaborn, Plotly
- Machine Learning: Scikit-Learn, XGBoost
- **Deep Learning**: TensorFlow, PyTorch

R Libraries

- Data Manipulation: dplyr, tidyr
- Visualization: ggplot2
- Machine Learning: caret, randomForest

Best Practices

Version Control

- Git:
- Commands: init, clone, add, commit, push, pull
- GitHub:

• Repositories, Pull Requests

Documentation

- Jupyter Notebooks:
- Markdown cells
- Code comments
- Readthedocs:
- Project documentation

Collaboration

- Agile Methodologies:
- Scrum, Kanban
- Tools:
- Jira, Trello

Examples

Python Code Snippets

- Data Loading:

```
import pandas as pd
df = pd.read csv('data.csv')
```

- Linear Regression:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
```

R Code Snippets

- Data Loading:

```
df <- read.csv('data.csv')</pre>
```

- Linear Regression:

```
model <- lm(y \sim ., data = df) summary(model)
```

Resources

Books

- "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron
- "The Elements of Statistical Learning" by Trevor Hastie, Robert Tibshirani, Jerome Friedman

Online Courses

- Coursera: "Machine Learning" by Andrew Ng
- edX: "Data Science MicroMasters" by Harvard

Communities

- **Kaggle**: Competitions, Datasets
- Stack Overflow: Q&A
- **Reddit**: r/datascience, r/machinelearning

Conclusion

- **Continuous Learning**: Stay updated with latest trends and technologies
- **Practice**: Regularly work on projects and competitions
- **Networking**: Engage with the data science community

By Ahmed Baheeg Khorshid

ver 1.0