Cheat Sheet for comprehensive GraphQL
GraphQL Basics

Schema Definition Language (SDL)
- Scalar Types: "Int’, ‘Float’, ‘String’, ‘Boolean’, ‘ID
- Object Types:
type User {
id: ID!

name: String!
email: String!

- Interfaces:

interface NamedEntity {
name: String!

- Enums:

enum UserRole {
ADMIN
USER

- Input Types:

input UserInput {
name: String!
email: String!

Queries and Mutations
- Queries: Fetch data

query |
user (id: "1") {

name
email

- Mutations: Modify data

mutation {

createUser (input: { name: "John", email:

id
name

- Subscriptions: Real-time updates

subscription {

newMessage {
content
sender

Advanced Features

Fragments
- Inline Fragments:

query {
user (id: "1") {
on Admin {
permissions

on User {
name

- Named Fragments:

fragment UserDetails on User ({

name

"john@example.com"

})

{

email

}

query {
user (id: "1") {
...UserDetails
}
1
Directives

- @include: Include field if condition is true

query {
user (id: "1") {

name @include(if: S$showName)
email

- @sKip: Skip field if condition is true

query {
user (id: "1") {
name @skip(if: $hideName)
email
}
}
Variables
- Defining Variables:

query GetUser (SuserId: ID!) {
user (id: S$SuserId) {
name
email

- Using Variables:

{

"userId": "1"

Best Practices

Naming Conventions
- Types: PascalCase (e.g., "UserProfile")

- Fields: camelCase (e.g., ‘'userName")
- Enums: UPPER_CASE (e.g, "USER_ROLE")

Error Handling
- GraphQL Errors: Returned in the ‘errors’ array in the response

- Custom Errors: Use custom error types in resolvers

Performance Optimization
- Batching: Use ‘DataLoader" to batch requests

- Caching: Implement caching strategies at the resolver level
Tools and Libraries

GraphQl Clients
- Apollo Client: Comprehensive state management

- Relay: Optimized for performance and pagination
- urgl: Lightweight and extensible

GraphQL Servers
- Apollo Server: Full-featured server

- Express GraphQL: Simple integration with Express

- GraphQL Yoga: Easy setup with subscriptions and file uploads

Examples

Full Example: Query with Variables

query GetUser (SuserId: ID!, $showEmail: Boolean!) {
user (id: S$SuserId) {

name
email Q@include (if: $showEmail)

Variables:

"userId": "1",
"showEmail": true

Full Example: Mutation

mutation CreateUser ($input: UserInput!) {
createUser (input: Sinput) {
id
name
}
}
Variables:
{
"input": {
"name": "John",
"email": "johnCexample.com"

Tips and Tricks

Debugging
- GraphiQL: In-browser IDE for exploring GraphQL

- Playground: Interactive environment for testing queries

Security
- Rate Limiting: Implement rate limiting on mutations

- Input Validation: Validate inputs to prevent injection attacks

Documentation
- Schema Introspection: Use introspection to explore the schema

- Comments: Add comments in SDL for better documentation

Conclusion
- GraphQL is powerful: Leverage its flexibility and efficiency

- Keep learning: Stay updated with new features and best practices
- Community support: Engage with the GraphQL community for help and resources
By Ahmed Baheeg Khorshid

ver 1.0

