Cheat Sheet for comprehensive MITx MicroMasters Program in Statistics and Data Science

Data Collection and Sampling

- Types of Data
- **Quantitative**: Numerical values (e.g., age, income)
- **Qualitative**: Categorical values (e.g., gender, color)
- Sampling Methods
- **Simple Random Sampling**: Each member has an equal chance of being selected.
- **Stratified Sampling**: Divide population into strata, sample from each.
- **Cluster Sampling**: Divide population into clusters, sample entire clusters.
- **Systematic Sampling**: Select every k-th member from the population.

Descriptive Statistics

- Measures of Central Tendency
- **Mean**: Sum of all values divided by the number of values.
- Formula: $\langle x = \frac{x}{n} \rangle$
- **Median**: Middle value when data is sorted.
- **Mode**: Most frequently occurring value.
- Measures of Variability
- **Range**: Difference between the maximum and minimum values.
- **Variance**: Average of the squared differences from the mean.
- Formula: $\langle \sin^2 2 = \frac{x_i \frac{x}}^2}{n} \rangle$
- **Standard Deviation**: Square root of the variance.
- Formula: \(\sigma = \sqrt{\sigma^2}\)

Probability

- Basic Probability

- Probability of an Event: \(P(A) = \frac{\text{Number of favorable} outcomes}}{\text{Total number of outcomes}} \)
- Complementary Probability: $\ \ (P(A^c) = 1 P(A) \)$
- Conditional Probability
- **Definition**: $\ \ (P(A|B) = \frac{P(A \setminus B)}{P(B)} \)$
- **Bayes' Theorem**: $\ \ (P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \)$

Probability Distributions

- Discrete Distributions
- **Binomial Distribution**: $\ \ (P(X=k) = \ binom\{n\}\{k\} p^k (1-p)^{n-k} \)$
- **Poisson Distribution**: $\ \ (P(X=k) = \frac{\advantum}{\advantum} = \frac{$
- Continuous Distributions
- **Normal Distribution**: $\ (f(x) = \frac{1}{\sigma(x)} e^{-\frac{(x-\mu)^2}{2\sigma^2}})$
- **Exponential Distribution**: $\ (f(x) = \lambda e^{-\lambda x} \)$

Inferential Statistics

- Hypothesis Testing
- Steps:
- 1. State the null ((H_0)) and alternative ((H_1)) hypotheses.
- 2. Choose the significance level ((α)).
- 3. Calculate the test statistic.
- 4. Determine the p-value.
- 5. Make a decision (reject $\(H_0\)$ if p-value < $\(\)$).
- Confidence Intervals
- **Mean**: $\ \$ \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \)

Regression Analysis

- Simple Linear Regression

- **Model**: \(y = \beta_0 + \beta_1 x + \epsilon \)
- Coefficient Estimation:
- Slope (\(\beta_1\)): \(\hat{\beta_1} = \frac{x})(y_i \frac{y})}{\sum (x_i \frac{x})^2} \)
- Intercept (\(\beta_0\)): \(\hat{\beta_0} = \bar{y} \hat{\beta_1} \bar{x} \)
- Multiple Linear Regression
- Model: \(y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon \)
- **Interpretation**: Each \(\beta_i\) represents the change in \(y\) for a one-unit change in \(x_i\) holding other variables constant.

Machine Learning

- Supervised Learning
- **Classification**: Predict categorical labels (e.g., Logistic Regression, Decision Trees)
- **Regression**: Predict continuous values (e.g., Linear Regression, Random Forest)
- Unsupervised Learning
- **Clustering**: Group similar data points (e.g., K-Means, Hierarchical Clustering)
- **Dimensionality Reduction**: Reduce the number of features (e.g., PCA, t-SNE)

Data Visualization

- Types of Plots
- **Scatter Plot**: Relationship between two variables.
- **Bar Chart**: Comparison of categorical data.
- **Histogram**: Distribution of numerical data.
- **Box Plot**: Summary of data distribution (min, Q1, median, Q3, max).
- Tools
- Python: Matplotlib, Seaborn, Plotly
- **R**: ggplot2
- **Tableau**: Interactive dashboards

Data Wrangling

- Data Cleaning
- Handling Missing Values:
- Remove rows/columns with missing data.
- Impute missing values (mean, median, mode).
- **Outlier Detection**: Use Z-scores or IQR method.
- Data Transformation
- **Normalization**: Scale data to a fixed range (e.g., Min-Max scaling).
- **Standardization**: Scale data to have mean 0 and variance 1 (Z-score).

Big Data and Analytics

- Big Data Technologies
- **Hadoop**: Distributed storage and processing.
- **Spark**: In-memory processing for large datasets.
- **NoSQL Databases**: MongoDB, Cassandra for unstructured data.
- Data Pipelines
- **ETL**: Extract, Transform, Load.
- **ELT**: Extract, Load, Transform.

Ethics and Privacy

- Data Privacy Laws
- **GDPR**: General Data Protection Regulation (EU).
- **CCPA**: California Consumer Privacy Act.
- Ethical Considerations
- **Bias in Algorithms**: Ensure fairness and transparency.
- **Data Ownership**: Respect user data rights.

Tools and Libraries

- Python Libraries
- **Pandas**: Data manipulation and analysis.

- NumPy: Numerical computing.
- **Scikit-learn**: Machine learning algorithms.
- **TensorFlow/PyTorch**: Deep learning frameworks.
- R Packages
- **dplyr**: Data manipulation.
- **ggplot2**: Data visualization.
- **caret**: Machine learning.

Practical Tips

- Data Exploration
- Always start with descriptive statistics and visualizations.
- Use correlation matrices to identify relationships between variables.
- Model Evaluation
- **Cross-Validation**: Split data into training and validation sets.
- Metrics: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Version Control
- Use Git for tracking changes in code and data.
- Collaborate effectively with GitHub or GitLab.

Resources

- Books
- "The Elements of Statistical Learning" by Hastie, Tibshirani, Friedman.
- "Python for Data Analysis" by Wes McKinney.
- Online Courses
- MITx MicroMasters in Statistics and Data Science.
- Coursera, edX for additional specialization courses.
- Communities
- Stack Overflow, Kaggle forums for troubleshooting and collaboration.

By Ahmed Baheeg Khorshid