Cisco Certified Design Professional (CCDP) - Enterprise
1 Enterprise Architecture and Design Principles
1-1 Enterprise Network Design Concepts
1-1 1 Network Design Life Cycle
1-1 2 Design Considerations for Enterprise Networks
1-1 3 Network Segmentation and Micro-Segmentation
1-1 4 Network Security Design Principles
1-1 5 Network Scalability and Performance
1-1 6 Network Resilience and Redundancy
1-1 7 Network Automation and Programmability
1-1 8 Network Virtualization and SDN
1-1 9 Network Management and Monitoring
1-1 10 Compliance and Regulatory Requirements
1-2 Enterprise Network Design Models
1-2 1 Hierarchical Network Design Model
1-2 2 Spine-Leaf Architecture
1-2 3 Modular Network Design
1-2 4 Centralized vs Distributed Network Design
1-2 5 Hybrid Network Design Models
1-3 Enterprise Network Design Tools and Methodologies
1-3 1 Network Design Documentation
1-3 2 Network Design Software Tools
1-3 3 Network Design Methodologies (e g , TOGAF, Zachman)
1-3 4 Network Design Best Practices
2 Enterprise Network Infrastructure Design
2-1 Campus Network Design
2-1 1 Campus Network Topologies
2-1 2 Campus Network Access Layer Design
2-1 3 Campus Network Distribution Layer Design
2-1 4 Campus Network Core Layer Design
2-1 5 Campus Network Wireless Design
2-1 6 Campus Network Security Design
2-1 7 Campus Network Management and Monitoring
2-2 Data Center Network Design
2-2 1 Data Center Network Topologies
2-2 2 Data Center Network Fabric Design
2-2 3 Data Center Network Redundancy and Resilience
2-2 4 Data Center Network Security Design
2-2 5 Data Center Network Virtualization
2-2 6 Data Center Network Automation
2-2 7 Data Center Network Management and Monitoring
2-3 WAN Design
2-3 1 WAN Topologies
2-3 2 WAN Connectivity Options (e g , MPLS, VPN, Internet)
2-3 3 WAN Optimization Techniques
2-3 4 WAN Security Design
2-3 5 WAN Management and Monitoring
2-4 Cloud and Hybrid Network Design
2-4 1 Cloud Network Design Principles
2-4 2 Hybrid Network Design
2-4 3 Cloud Connectivity Options
2-4 4 Cloud Network Security Design
2-4 5 Cloud Network Management and Monitoring
3 Enterprise Network Services Design
3-1 IP Addressing and Subnetting
3-1 1 IPv4 and IPv6 Addressing
3-1 2 Subnetting Techniques
3-1 3 IP Address Management (IPAM)
3-1 4 Addressing for Network Virtualization
3-2 Routing Protocols and Design
3-2 1 Interior Gateway Protocols (e g , OSPF, EIGRP)
3-2 2 Exterior Gateway Protocols (e g , BGP)
3-2 3 Routing Policy Design
3-2 4 Route Redistribution and Filtering
3-2 5 Routing for Network Virtualization
3-3 Switching and VLAN Design
3-3 1 Layer 2 Switching Protocols (e g , STP, VTP)
3-3 2 VLAN Design and Implementation
3-3 3 Trunking and Inter-VLAN Routing
3-3 4 Virtual Switching (e g , VSS, VPC)
3-3 5 Switching for Network Virtualization
3-4 Network Security Services Design
3-4 1 Firewall Design and Implementation
3-4 2 Intrusion Detection and Prevention Systems (IDSIPS)
3-4 3 Network Access Control (NAC)
3-4 4 VPN Design and Implementation
3-4 5 Secure Network Design Best Practices
3-5 Network Management and Monitoring Services Design
3-5 1 Network Management Protocols (e g , SNMP, NetFlow)
3-5 2 Network Monitoring Tools and Techniques
3-5 3 Network Performance Optimization
3-5 4 Network Troubleshooting and Diagnostics
3-5 5 Network Management for Virtualized Environments
4 Enterprise Network Implementation and Optimization
4-1 Network Implementation Planning
4-1 1 Implementation Project Management
4-1 2 Implementation Documentation
4-1 3 Implementation Best Practices
4-1 4 Implementation Testing and Validation
4-2 Network Optimization Techniques
4-2 1 Network Performance Tuning
4-2 2 Network Traffic Analysis and Optimization
4-2 3 Network Latency Reduction Techniques
4-2 4 Network Optimization for Virtualized Environments
4-3 Network Troubleshooting and Diagnostics
4-3 1 Troubleshooting Methodologies
4-3 2 Common Network Issues and Solutions
4-3 3 Network Diagnostics Tools and Techniques
4-3 4 Troubleshooting for Virtualized Networks
4-4 Network Compliance and Audit
4-4 1 Network Compliance Requirements
4-4 2 Network Audit Procedures
4-4 3 Network Compliance Best Practices
4-4 4 Network Compliance for Virtualized Environments
5 Enterprise Network Design Case Studies
5-1 Campus Network Design Case Study
5-1 1 Case Study Overview
5-1 2 Design Considerations
5-1 3 Implementation and Optimization
5-1 4 Lessons Learned
5-2 Data Center Network Design Case Study
5-2 1 Case Study Overview
5-2 2 Design Considerations
5-2 3 Implementation and Optimization
5-2 4 Lessons Learned
5-3 WAN Design Case Study
5-3 1 Case Study Overview
5-3 2 Design Considerations
5-3 3 Implementation and Optimization
5-3 4 Lessons Learned
5-4 Cloud and Hybrid Network Design Case Study
5-4 1 Case Study Overview
5-4 2 Design Considerations
5-4 3 Implementation and Optimization
5-4 4 Lessons Learned
Enterprise Architecture and Design Principles

Enterprise Architecture and Design Principles

Key Concepts

Business Architecture

Business Architecture defines the structure and operation of business processes, organizational structures, and governance frameworks. It aligns business goals with IT strategies to ensure that technology solutions support the overall business objectives. For example, a retail company might use Business Architecture to map out its supply chain processes and align them with IT systems to optimize inventory management.

Application Architecture

Application Architecture outlines the structure and interaction of applications within an enterprise. It ensures that applications are modular, scalable, and interoperable. For instance, a banking system might have separate applications for customer accounts, loans, and transactions, all of which need to communicate seamlessly to provide a unified user experience.

Data Architecture

Data Architecture focuses on the design and management of data assets. It ensures data integrity, accessibility, and security. Consider a healthcare system where patient records need to be stored securely and accessed by authorized personnel only. Data Architecture would define how these records are stored, backed up, and accessed.

Technology Architecture

Technology Architecture specifies the hardware, software, and network infrastructure required to support the enterprise's IT environment. It ensures that the technology stack is robust, scalable, and cost-effective. For example, a large enterprise might use a hybrid cloud solution to balance cost, scalability, and performance requirements.

Design Principles

Design Principles are guidelines that inform the design and implementation of enterprise solutions. These principles include modularity, scalability, security, and interoperability. For example, the principle of modularity ensures that systems can be easily updated or replaced without affecting the entire architecture, much like replacing a single brick in a wall without dismantling the entire structure.

Examples and Analogies

Think of an enterprise architecture as the blueprint of a city. Business Architecture is the layout of streets and buildings, Application Architecture is the design of individual buildings, Data Architecture is the plumbing and electrical systems, Technology Architecture is the infrastructure like roads and utilities, and Design Principles are the laws and regulations that govern the city's development.

In summary, understanding and applying Enterprise Architecture and Design Principles is crucial for creating a cohesive, efficient, and adaptable IT environment that supports business objectives.