Cisco Certified Network Professional (CCNP) - Cloud
1 Cloud Concepts, Architecture, and Design
1-1 Cloud Computing Concepts
1-1 1 Definition and Characteristics of Cloud Computing
1-1 2 Cloud Service Models (IaaS, PaaS, SaaS)
1-1 3 Cloud Deployment Models (Public, Private, Hybrid, Community)
1-1 4 Cloud Economics and Billing Models
1-1 5 Cloud Security and Compliance
1-2 Cloud Architecture
1-2 1 Cloud Reference Architecture
1-2 2 Cloud Infrastructure Components
1-2 3 Cloud Networking Concepts
1-2 4 Cloud Storage Concepts
1-2 5 Cloud Application Architecture
1-3 Cloud Design Principles
1-3 1 Scalability and Elasticity
1-3 2 High Availability and Disaster Recovery
1-3 3 Security and Compliance in Cloud Design
1-3 4 Cost Optimization in Cloud Design
1-3 5 Interoperability and Portability
2 Cisco Cloud Fundamentals
2-1 Cisco Cloud Platforms
2-1 1 Cisco CloudCenter
2-1 2 Cisco Intercloud Fabric
2-1 3 Cisco Cloud Services Router (CSR)
2-1 4 Cisco Unified Computing System (UCS)
2-2 Cisco Cloud Services
2-2 1 Cisco Managed Cloud Services
2-2 2 Cisco Cloud Web Security
2-2 3 Cisco Cloudlock
2-2 4 Cisco Cloud Connect
2-3 Cisco Cloud Networking
2-3 1 Cisco Cloud Networking Solutions
2-3 2 Cisco Application Centric Infrastructure (ACI)
2-3 3 Cisco Software-Defined Networking (SDN)
2-3 4 Cisco Network Functions Virtualization (NFV)
3 Cloud Infrastructure and Virtualization
3-1 Virtualization Concepts
3-1 1 Virtualization Technologies
3-1 2 Hypervisors and Virtual Machines
3-1 3 Virtual Networking and Storage
3-1 4 Virtualization Management Tools
3-2 Cloud Infrastructure Components
3-2 1 Compute Resources
3-2 2 Storage Resources
3-2 3 Network Resources
3-2 4 Load Balancing and Auto-Scaling
3-3 Cloud Infrastructure Management
3-3 1 Infrastructure as Code (IaC)
3-3 2 Cloud Management Platforms
3-3 3 Monitoring and Logging in Cloud Environments
3-3 4 Automation and Orchestration
4 Cloud Security and Compliance
4-1 Cloud Security Concepts
4-1 1 Cloud Security Models
4-1 2 Identity and Access Management (IAM)
4-1 3 Data Security and Encryption
4-1 4 Network Security in Cloud Environments
4-2 Cloud Compliance and Governance
4-2 1 Regulatory Compliance in Cloud
4-2 2 Cloud Governance Models
4-2 3 Risk Management in Cloud
4-2 4 Auditing and Monitoring in Cloud
4-3 Cisco Cloud Security Solutions
4-3 1 Cisco Cloud Security Services
4-3 2 Cisco Identity Services Engine (ISE)
4-3 3 Cisco Secure Access Control System (ACS)
4-3 4 Cisco Cloudlock and Cloud Web Security
5 Cloud Operations and Management
5-1 Cloud Operations
5-1 1 Cloud Service Management
5-1 2 Cloud Monitoring and Troubleshooting
5-1 3 Incident and Problem Management in Cloud
5-1 4 Cloud Backup and Recovery
5-2 Cloud Management Tools
5-2 1 Cisco CloudCenter Suite
5-2 2 Cisco Intersight
5-2 3 Cisco Prime Infrastructure
5-2 4 Cisco Network Management Tools
5-3 Cloud Automation and Orchestration
5-3 1 Automation Tools and Frameworks
5-3 2 Orchestration in Cloud Environments
5-3 3 Continuous Integration and Continuous Deployment (CICD)
5-3 4 DevOps Practices in Cloud
6 Cloud Application Development and Deployment
6-1 Cloud Application Development
6-1 1 Cloud-Native Application Development
6-1 2 Microservices Architecture
6-1 3 API Management in Cloud
6-1 4 Containerization and Docker
6-2 Cloud Application Deployment
6-2 1 Deployment Models (Blue-Green, Canary, AB Testing)
6-2 2 Cloud Deployment Tools
6-2 3 Application Lifecycle Management in Cloud
6-2 4 Monitoring and Scaling Applications in Cloud
6-3 Cisco DevNet and Cloud Development
6-3 1 Cisco DevNet Platform
6-3 2 Cisco API Management
6-3 3 Cisco Container Platforms
6-3 4 Cisco DevOps Tools and Practices
7 Cloud Integration and Interoperability
7-1 Cloud Integration Concepts
7-1 1 Integration Patterns and Practices
7-1 2 API Integration in Cloud
7-1 3 Data Integration in Cloud
7-1 4 Hybrid Cloud Integration
7-2 Cloud Interoperability
7-2 1 Interoperability Standards and Protocols
7-2 2 Multi-Cloud Strategies
7-2 3 Cloud Federation and Intercloud
7-2 4 Cloud Migration and Interoperability
7-3 Cisco Cloud Integration Solutions
7-3 1 Cisco Intercloud Fabric
7-3 2 Cisco Cloud Connect
7-3 3 Cisco API Gateway
7-3 4 Cisco Integration Platforms
8 Cloud Service Management and Optimization
8-1 Cloud Service Management
8-1 1 Service Level Agreements (SLAs)
8-1 2 Cloud Service Catalog
8-1 3 Cloud Service Request and Fulfillment
8-1 4 Cloud Service Monitoring and Reporting
8-2 Cloud Optimization
8-2 1 Cost Optimization in Cloud
8-2 2 Performance Optimization in Cloud
8-2 3 Resource Optimization in Cloud
8-2 4 Energy Efficiency in Cloud
8-3 Cisco Cloud Service Management Solutions
8-3 1 Cisco CloudCenter Suite
8-3 2 Cisco Intersight
8-3 3 Cisco Prime Infrastructure
8-3 4 Cisco Service Management Tools
9 Cloud Trends and Future Directions
9-1 Emerging Cloud Technologies
9-1 1 Edge Computing
9-1 2 Serverless Computing
9-1 3 Quantum Computing in Cloud
9-1 4 Blockchain in Cloud
9-2 Future of Cloud Computing
9-2 1 Cloud 2-0 and Beyond
9-2 2 AI and Machine Learning in Cloud
9-2 3 Autonomous Cloud Operations
9-2 4 Sustainability in Cloud
9-3 Cisco's Vision for the Future of Cloud
9-3 1 Cisco's Cloud Strategy
9-3 2 Cisco's Innovation in Cloud
9-3 3 Cisco's Partnerships and Ecosystem
9-3 4 Cisco's Roadmap for Cloud
9.1.2 Serverless Computing Explained

9.1.2 Serverless Computing Explained

Serverless Computing is a cloud computing model where the cloud provider dynamically manages the allocation and provisioning of servers. Key concepts related to Serverless Computing include Function as a Service (FaaS), Event-Driven Architecture, Scalability, Cost Efficiency, and Vendor Lock-In.

Function as a Service (FaaS)

Function as a Service (FaaS) is a category of cloud computing services that provides a platform allowing customers to develop, run, and manage application functionalities without the complexity of building and maintaining the infrastructure typically associated with developing and launching an app. FaaS allows developers to write and deploy code in the form of functions that are triggered by specific events.

Example: Think of FaaS as a vending machine. Just as a vending machine dispenses products when you insert money, FaaS executes functions when triggered by specific events, such as an HTTP request or a file upload.

Event-Driven Architecture

Event-Driven Architecture is a software architecture pattern that promotes the production, detection, consumption of, and reaction to events. In Serverless Computing, functions are triggered by events, such as changes in a database, file uploads, or API calls. This architecture allows for highly responsive and scalable applications.

Example: Consider Event-Driven Architecture as a domino effect. Just as one domino falling triggers the next, an event in an application triggers a function, which in turn may trigger another function, creating a chain of reactions.

Scalability

Scalability in Serverless Computing refers to the ability of the cloud provider to automatically scale the number of function instances based on the incoming workload. This ensures that applications can handle varying levels of traffic without manual intervention. Scalability is one of the key advantages of Serverless Computing, as it allows applications to scale up or down based on demand.

Example: Think of Scalability as a water faucet. Just as a water faucet adjusts the flow of water based on demand, Serverless Computing adjusts the number of function instances based on the incoming workload, ensuring optimal performance.

Cost Efficiency

Cost Efficiency in Serverless Computing is achieved by paying only for the compute time consumed by functions. Since functions are only executed when triggered, and resources are automatically scaled, organizations can reduce costs by avoiding the need to maintain idle servers. This pay-per-use model is particularly beneficial for applications with unpredictable or intermittent workloads.

Example: Consider Cost Efficiency as a pay-as-you-go mobile plan. Just as you pay for the minutes you use on your phone, you pay for the compute time your functions consume, making Serverless Computing cost-effective for variable workloads.

Vendor Lock-In

Vendor Lock-In refers to the risk of being dependent on a single cloud provider for Serverless Computing services. Since Serverless platforms are often proprietary, migrating to a different provider can be challenging. To mitigate this risk, organizations should consider adopting open standards and frameworks that are compatible with multiple cloud providers.

Example: Think of Vendor Lock-In as renting a house with a unique key. Just as you are dependent on the landlord for the key, you are dependent on the cloud provider for the Serverless platform. To avoid lock-in, consider using a house with a standard lock that can be opened with any compatible key.

Understanding these key concepts of Serverless Computing is essential for leveraging its benefits in cloud-based applications. By adopting Function as a Service (FaaS), Event-Driven Architecture, Scalability, Cost Efficiency, and mitigating Vendor Lock-In, organizations can build highly responsive, scalable, and cost-effective applications.