Cisco Certified Internetwork Expert (CCIE) - Enterprise Infrastructure
1 Network Architecture and Design
1-1 Enterprise Network Design Principles
1-2 Network Segmentation and Micro-Segmentation
1-3 High Availability and Redundancy
1-4 Scalability and Performance Optimization
1-5 Network Automation and Programmability
1-6 Network Security Design
1-7 Network Management and Monitoring
2 IP Routing
2-1 IPv4 and IPv6 Addressing
2-2 Static Routing
2-3 Dynamic Routing Protocols (RIP, EIGRP, OSPF, IS-IS, BGP)
2-4 Route Redistribution and Filtering
2-5 Route Summarization and Aggregation
2-6 Policy-Based Routing (PBR)
2-7 Multi-Protocol Label Switching (MPLS)
2-8 IPv6 Routing Protocols (RIPng, EIGRP for IPv6, OSPFv3, IS-IS for IPv6, BGP4+)
2-9 IPv6 Transition Mechanisms (Dual Stack, Tunneling, NAT64DNS64)
3 LAN Switching
3-1 Ethernet Technologies
3-2 VLANs and Trunking
3-3 Spanning Tree Protocol (STP) and Variants (RSTP, MSTP)
3-4 EtherChannelLink Aggregation
3-5 Quality of Service (QoS) in LANs
3-6 Multicast in LANs
3-7 Wireless LANs (WLAN)
3-8 Network Access Control (NAC)
4 WAN Technologies
4-1 WAN Protocols and Technologies (PPP, HDLC, Frame Relay, ATM)
4-2 MPLS VPNs
4-3 VPN Technologies (IPsec, SSLTLS, DMVPN, FlexVPN)
4-4 WAN Optimization and Compression
4-5 WAN Security
4-6 Software-Defined WAN (SD-WAN)
5 Network Services
5-1 DNS and DHCP
5-2 Network Time Protocol (NTP)
5-3 Network File System (NFS) and Common Internet File System (CIFS)
5-4 Network Address Translation (NAT)
5-5 IP Multicast
5-6 Quality of Service (QoS)
5-7 Network Management Protocols (SNMP, NetFlow, sFlow)
5-8 Network Virtualization (VXLAN, NVGRE)
6 Security
6-1 Network Security Concepts
6-2 Firewall Technologies
6-3 Intrusion Detection and Prevention Systems (IDSIPS)
6-4 VPN Technologies (IPsec, SSLTLS)
6-5 Access Control Lists (ACLs)
6-6 Network Address Translation (NAT) and Port Address Translation (PAT)
6-7 Secure Shell (SSH) and Secure Copy (SCP)
6-8 Public Key Infrastructure (PKI)
6-9 Network Access Control (NAC)
6-10 Security Monitoring and Logging
7 Automation and Programmability
7-1 Network Programmability Concepts
7-2 RESTful APIs and NETCONFYANG
7-3 Python Scripting for Network Automation
7-4 Ansible for Network Automation
7-5 Cisco Model Driven Programmability (CLI, NETCONF, RESTCONF, gRPC)
7-6 Network Configuration Management (NCM)
7-7 Network Automation Tools (Cisco NSO, Ansible, Puppet, Chef)
7-8 Network Telemetry and Streaming Telemetry
8 Troubleshooting and Optimization
8-1 Network Troubleshooting Methodologies
8-2 Troubleshooting IP Routing Issues
8-3 Troubleshooting LAN Switching Issues
8-4 Troubleshooting WAN Connectivity Issues
8-5 Troubleshooting Network Services (DNS, DHCP, NTP)
8-6 Troubleshooting Network Security Issues
8-7 Performance Monitoring and Optimization
8-8 Network Traffic Analysis (Wireshark, tcpdump)
8-9 Network Change Management
9 Emerging Technologies
9-1 Software-Defined Networking (SDN)
9-2 Network Function Virtualization (NFV)
9-3 Intent-Based Networking (IBN)
9-4 5G Core Network
9-5 IoT Network Design and Management
9-6 Cloud Networking (AWS, Azure, Google Cloud)
9-7 Edge Computing
9-8 AI and Machine Learning in Networking
Route Redistribution and Filtering Explained

Route Redistribution and Filtering Explained

Key Concepts

Route Redistribution

Route Redistribution is the process of sharing routing information between different routing protocols. This is necessary when a network uses multiple routing protocols, such as OSPF and EIGRP, and needs to ensure that all routers have a consistent view of the network topology.

For example, in a network where OSPF is used for internal routing and BGP is used for external routing, route redistribution allows the internal OSPF routes to be shared with BGP and vice versa. This ensures that all routers, whether they use OSPF or BGP, have complete routing information.

Route Filtering

Route Filtering is the process of controlling which routes are shared during route redistribution. This is important to prevent routing loops, ensure optimal routing paths, and manage the size of routing tables. Route filtering can be done using access lists, route maps, or prefix lists.

For instance, if a network administrator wants to redistribute only certain routes from OSPF to EIGRP, they can use a route map to specify which routes should be included. This ensures that only the necessary routes are shared, preventing unnecessary traffic and potential routing issues.

Examples and Analogies

Consider a university with multiple departments, each using different communication methods (e.g., email, instant messaging). Route Redistribution is like having a central system that translates and shares information between these methods, ensuring everyone is informed. Route Filtering is like setting rules for which information is shared, ensuring that only relevant updates are communicated.

In a library, Route Redistribution is akin to a librarian who collects information from various sections (e.g., fiction, non-fiction) and makes it available to all patrons. Route Filtering is like the librarian deciding which books to recommend based on the patron's interests, ensuring they receive only the most relevant information.

Conclusion

Understanding Route Redistribution and Filtering is essential for managing complex networks that use multiple routing protocols. By mastering these concepts, network administrators can ensure efficient and reliable routing, prevent issues like routing loops, and optimize network performance.