Cisco DevNet Certifications - DevNet Specialist
1 Introduction to Cisco DevNet
2 Cisco DevNet Certifications Overview
1 DevNet Associate
2 DevNet Professional
3 DevNet Specialist
3 DevNet Specialist Certification Path
1 Core Competencies
2 Specialization Tracks
4 DevNet Specialist - Enterprise Automation and Programmability
1 Introduction to Enterprise Automation
2 Network Programmability Concepts
3 Cisco DNA Center APIs
4 Cisco IOS XE Programmability
5 Cisco ACI Programmability
6 Cisco SD-WAN Programmability
7 Cisco UCS Programmability
8 Automation Tools and Frameworks
9 Python for Network Engineers
10 RESTful APIs and HTTP Methods
11 JSON and XML Data Formats
12 YANG Data Modeling
13 NETCONF and RESTCONF
14 Ansible for Network Automation
15 Puppet for Network Automation
16 Git and Version Control
17 CICD Pipelines for Network Automation
18 Troubleshooting Automation Issues
5 DevNet Specialist - Network Programmability and Automation
1 Introduction to Network Programmability
2 Network Automation Concepts
3 Cisco NX-API and NX-OS Programmability
4 Cisco IOS XR Programmability
5 Cisco Meraki Programmability
6 Cisco Catalyst 9000 Series Programmability
7 Cisco SD-Access Programmability
8 Network Automation Tools and Frameworks
9 Python for Network Engineers
10 RESTful APIs and HTTP Methods
11 JSON and XML Data Formats
12 YANG Data Modeling
13 NETCONF and RESTCONF
14 Ansible for Network Automation
15 Puppet for Network Automation
16 Git and Version Control
17 CICD Pipelines for Network Automation
18 Troubleshooting Automation Issues
6 DevNet Specialist - Software Development and Design
1 Introduction to Software Development
2 Software Design Principles
3 Object-Oriented Programming (OOP)
4 Python Programming Language
5 RESTful API Design
6 Microservices Architecture
7 Containerization with Docker
8 Orchestration with Kubernetes
9 CICD Pipelines for Software Development
10 Test-Driven Development (TDD)
11 Version Control with Git
12 Agile Development Methodologies
13 DevOps Practices
14 Troubleshooting Software Development Issues
7 DevNet Specialist - Cloud Automation and Programmability
1 Introduction to Cloud Automation
2 Cloud Programmability Concepts
3 Cisco CloudCenter Suite
4 Cisco Intersight Programmability
5 Cisco Hybrid Cloud Manager
6 Cisco Application Policy Infrastructure Controller (APIC)
7 Cisco Container Platform
8 Cloud Automation Tools and Frameworks
9 Python for Cloud Engineers
10 RESTful APIs and HTTP Methods
11 JSON and XML Data Formats
12 YANG Data Modeling
13 NETCONF and RESTCONF
14 Ansible for Cloud Automation
15 Puppet for Cloud Automation
16 Git and Version Control
17 CICD Pipelines for Cloud Automation
18 Troubleshooting Cloud Automation Issues
8 DevNet Specialist - Collaboration Programmability
1 Introduction to Collaboration Programmability
2 Cisco Webex Programmability
3 Cisco Unified Communications Manager (CUCM) Programmability
4 Cisco Contact Center Enterprise (CCE) Programmability
5 Collaboration Programmability Tools and Frameworks
6 Python for Collaboration Engineers
7 RESTful APIs and HTTP Methods
8 JSON and XML Data Formats
9 YANG Data Modeling
10 NETCONF and RESTCONF
11 Ansible for Collaboration Automation
12 Puppet for Collaboration Automation
13 Git and Version Control
14 CICD Pipelines for Collaboration Automation
15 Troubleshooting Collaboration Programmability Issues
9 DevNet Specialist - Security Programmability
1 Introduction to Security Programmability
2 Cisco Firepower Management Center (FMC) Programmability
3 Cisco Identity Services Engine (ISE) Programmability
4 Cisco Stealthwatch Programmability
5 Cisco Secure Network Analytics (SNA) Programmability
6 Security Programmability Tools and Frameworks
7 Python for Security Engineers
8 RESTful APIs and HTTP Methods
9 JSON and XML Data Formats
10 YANG Data Modeling
11 NETCONF and RESTCONF
12 Ansible for Security Automation
13 Puppet for Security Automation
14 Git and Version Control
15 CICD Pipelines for Security Automation
16 Troubleshooting Security Programmability Issues
10 DevNet Specialist - Data Center Programmability
1 Introduction to Data Center Programmability
2 Cisco Application Centric Infrastructure (ACI) Programmability
3 Cisco Nexus Programmability
4 Cisco UCS Programmability
5 Data Center Programmability Tools and Frameworks
6 Python for Data Center Engineers
7 RESTful APIs and HTTP Methods
8 JSON and XML Data Formats
9 YANG Data Modeling
10 NETCONF and RESTCONF
11 Ansible for Data Center Automation
12 Puppet for Data Center Automation
13 Git and Version Control
14 CICD Pipelines for Data Center Automation
15 Troubleshooting Data Center Programmability Issues
11 DevNet Specialist - IoT Programmability
1 Introduction to IoT Programmability
2 Cisco IoT Field Network Director (FND) Programmability
3 Cisco Kinetic for Cities Programmability
4 Cisco IoT Operations Dashboard Programmability
5 IoT Programmability Tools and Frameworks
6 Python for IoT Engineers
7 RESTful APIs and HTTP Methods
8 JSON and XML Data Formats
9 YANG Data Modeling
10 NETCONF and RESTCONF
11 Ansible for IoT Automation
12 Puppet for IoT Automation
13 Git and Version Control
14 CICD Pipelines for IoT Automation
15 Troubleshooting IoT Programmability Issues
12 DevNet Specialist - Service Provider Programmability
1 Introduction to Service Provider Programmability
2 Cisco Network Services Orchestrator (NSO) Programmability
3 Cisco IOS XR Programmability
4 Cisco ASR 9000 Series Programmability
5 Service Provider Programmability Tools and Frameworks
6 Python for Service Provider Engineers
7 RESTful APIs and HTTP Methods
8 JSON and XML Data Formats
9 YANG Data Modeling
10 NETCONF and RESTCONF
11 Ansible for Service Provider Automation
12 Puppet for Service Provider Automation
13 Git and Version Control
14 CICD Pipelines for Service Provider Automation
15 Troubleshooting Service Provider Programmability Issues
13 DevNet Specialist - Wireless Programmability
1 Introduction to Wireless Programmability
2 Cisco Wireless LAN Controller (WLC) Programmability
3 Cisco DNA Center Wireless Programmability
4 Cisco Mobility Services Engine (MSE) Programmability
5 Wireless Programmability Tools and Frameworks
6 Python for Wireless Engineers
7 RESTful APIs and HTTP Methods
8 JSON and XML Data Formats
9 YANG Data Modeling
10 NETCONF and RESTCONF
11 Ansible for Wireless Automation
12 Puppet for Wireless Automation
13 Git and Version Control
14 CICD Pipelines for Wireless Automation
15 Troubleshooting Wireless Programmability Issues
14 DevNet Specialist - DevOps and Automation
1 Introduction to DevOps and Automation
2 Continuous Integration (CI)
3 Continuous Deployment (CD)
4 Infrastructure as Code (IaC)
5 Configuration Management Tools
6 Monitoring and Logging
7 Containerization and Orchestration
8 CICD Pipelines
9 Version Control with Git
10 Agile Development Methodologies
11 DevOps Practices
12 Troubleshooting DevOps Issues
15 DevNet Specialist - Automation and Programmability Best Practices
1 Best Practices for Network Automation
2 Best Practices for Software Development
3 Best Practices for Cloud Automation
4 Best Practices for Security Programmability
5 Best Practices for Data Center Programmability
6 Best Practices for IoT Programmability
7 Best Practices for Service Provider Programmability
8 Best Practices for Wireless Programmability
9 Best Practices for Collaboration Programmability
10 Best Practices for DevOps and Automation
16 DevNet Specialist - Certification Exam Preparation
1 Exam Objectives and Domains
2 Study Resources and Materials
3 Practice Exams and Simulations
4 Exam Registration and Scheduling
5 Test-Taking Strategies
6 Post-Exam Actions and Certification Maintenance
Version Control with Git Explained

Version Control with Git Explained

1. Repository

A repository, or "repo," is a directory where your project's files are stored, along with the entire history of changes. It can be local (on your computer) or remote (on a server like GitHub or GitLab).

Example: When you initialize a new Git repository in a directory using the command git init, Git creates a hidden directory called ".git" where it stores all the version control information.

2. Commit

A commit is a snapshot of your project at a specific point in time. Each commit records the changes you've made to the files in your repository, along with a message describing those changes.

Example: After making changes to your code, you can create a commit using git commit -m "Added new feature". This command saves the changes and associates them with the message "Added new feature."

3. Branch

A branch is a parallel version of your repository. It allows you to work on different features or fixes without affecting the main codebase. Branches are useful for isolating changes and for collaboration.

Example: You can create a new branch called "feature-x" using git branch feature-x. This branch can then be checked out and worked on independently of the main branch.

4. Merge

Merging combines the changes from one branch into another. This is typically done to integrate the work from a feature branch back into the main branch.

Example: After completing work on the "feature-x" branch, you can merge it into the main branch using git merge feature-x. This command integrates the changes from "feature-x" into the main branch.

5. Clone

Cloning creates a copy of a remote repository on your local machine. This allows you to work on the project locally and push your changes back to the remote repository.

Example: You can clone a repository from GitHub using git clone https://github.com/username/repo.git. This command downloads the entire repository to your local machine.

6. Push

Pushing sends your committed changes to a remote repository. This allows others to access your changes and collaborate on the project.

Example: After making commits locally, you can push them to the remote repository using git push origin main. This command uploads your changes to the "main" branch on the remote server.

7. Pull

Pulling fetches the latest changes from a remote repository and merges them into your local branch. This ensures that your local copy is up-to-date with the remote repository.

Example: To update your local repository with the latest changes from the remote, you can use git pull origin main. This command downloads the changes and merges them into your local branch.

8. Fetch

Fetching retrieves the latest changes from a remote repository without merging them into your local branch. This allows you to review the changes before deciding to merge them.

Example: You can fetch the latest changes from the remote repository using git fetch origin. This command downloads the changes but does not merge them into your local branch.

9. Remote

A remote is a version of your repository that is hosted on a server, such as GitHub or GitLab. Remotes allow for collaboration and sharing of your project with others.

Example: You can add a remote to your local repository using git remote add origin https://github.com/username/repo.git. This command associates your local repository with the remote repository on GitHub.

10. Tag

A tag is a reference to a specific point in the repository's history, often used to mark release points (e.g., v1.0). Tags are useful for marking significant milestones in your project.

Example: You can create a tag for version 1.0 using git tag v1.0. This command marks the current commit as version 1.0, making it easy to refer back to this point in the future.

11. Rebase

Rebasing is the process of moving or combining a sequence of commits to a new base commit. It is often used to integrate changes from one branch into another in a cleaner way than merging.

Example: You can rebase the "feature-x" branch onto the "main" branch using git rebase main. This command applies the commits from "feature-x" on top of the latest commit in the "main" branch, resulting in a linear history.