Oracle Certified Professional Java SE 11 Developer
1 Java Fundamentals
1-1 Java Basics
1-1 1 Java Platform Overview
1-1 2 Java Development Environment
1-1 3 Java Program Structure
1-1 4 Java Virtual Machine (JVM)
1-1 5 Java Development Kit (JDK)
1-1 6 Java Runtime Environment (JRE)
1-2 Object-Oriented Programming (OOP) Concepts
1-2 1 Classes and Objects
1-2 2 Inheritance
1-2 3 Polymorphism
1-2 4 Encapsulation
1-2 5 Abstraction
1-2 6 Interfaces
1-2 7 Abstract Classes
1-3 Data Types and Variables
1-3 1 Primitive Data Types
1-3 2 Reference Data Types
1-3 3 Variable Declaration and Initialization
1-3 4 Type Conversion and Casting
1-3 5 Arrays
1-4 Control Flow
1-4 1 Conditional Statements (if, else, switch)
1-4 2 Looping Constructs (for, while, do-while)
1-4 3 Break and Continue Statements
1-4 4 Exception Handling
2 Java Collections Framework
2-1 Collections Overview
2-1 1 Collection Interfaces
2-1 2 Collection Classes
2-1 3 Collection Algorithms
2-2 Lists
2-2 1 ArrayList
2-2 2 LinkedList
2-2 3 List Operations
2-3 Sets
2-3 1 HashSet
2-3 2 TreeSet
2-3 3 LinkedHashSet
2-4 Maps
2-4 1 HashMap
2-4 2 TreeMap
2-4 3 LinkedHashMap
2-5 Queues and Deques
2-5 1 PriorityQueue
2-5 2 ArrayDeque
3 Java Streams and Lambda Expressions
3-1 Lambda Expressions
3-1 1 Lambda Syntax
3-1 2 Functional Interfaces
3-1 3 Method References
3-2 Streams
3-2 1 Stream Creation
3-2 2 Intermediate Operations
3-2 3 Terminal Operations
3-2 4 Parallel Streams
4 Java Concurrency
4-1 Threads
4-1 1 Thread Creation
4-1 2 Thread States
4-1 3 Thread Synchronization
4-1 4 Thread Communication
4-2 Concurrency Utilities
4-2 1 Executor Framework
4-2 2 Concurrent Collections
4-2 3 Atomic Variables
4-2 4 Locks
5 Java IO and NIO
5-1 Input and Output Streams
5-1 1 Byte Streams
5-1 2 Character Streams
5-1 3 Buffered Streams
5-2 File IO
5-2 1 File Class
5-2 2 FileReader and FileWriter
5-2 3 FileInputStream and FileOutputStream
5-3 NIO (New IO)
5-3 1 Path Interface
5-3 2 Files Class
5-3 3 Channels and Buffers
5-3 4 Asynchronous IO
6 Java Date and Time API
6-1 Date and Time Classes
6-1 1 LocalDate
6-1 2 LocalTime
6-1 3 LocalDateTime
6-1 4 ZonedDateTime
6-2 Period and Duration
6-2 1 Period Class
6-2 2 Duration Class
6-3 Time Zones and Calendars
6-3 1 TimeZone Class
6-3 2 Calendar Class
7 Java Modules
7-1 Module System Overview
7-1 1 Module Declaration
7-1 2 Module Path
7-1 3 Module Dependencies
7-2 Module Resolution
7-2 1 Automatic Modules
7-2 2 Named Modules
7-2 3 Unnamed Modules
7-3 Module Services
7-3 1 Service Provider Interface (SPI)
7-3 2 ServiceLoader Class
8 Java Security
8-1 Security Basics
8-1 1 Security Manager
8-1 2 Permissions
8-1 3 Policy Files
8-2 Cryptography
8-2 1 Key Generation
8-2 2 Encryption and Decryption
8-2 3 Digital Signatures
8-3 Secure Coding Practices
8-3 1 Input Validation
8-3 2 Secure Communication
8-3 3 Authentication and Authorization
9 Java Networking
9-1 Networking Basics
9-1 1 InetAddress Class
9-1 2 URL and URLConnection Classes
9-2 Sockets
9-2 1 Socket Class
9-2 2 ServerSocket Class
9-2 3 DatagramSocket Class
9-3 Networking Protocols
9-3 1 TCPIP
9-3 2 UDP
9-3 3 HTTP
10 Java Database Connectivity (JDBC)
10-1 JDBC Basics
10-1 1 JDBC Architecture
10-1 2 JDBC Drivers
10-1 3 Establishing a Connection
10-2 Executing SQL Statements
10-2 1 Statement Interface
10-2 2 PreparedStatement Interface
10-2 3 CallableStatement Interface
10-3 ResultSet
10-3 1 ResultSet Interface
10-3 2 ResultSetMetaData Interface
10-4 Transaction Management
10-4 1 Commit and Rollback
10-4 2 Savepoints
11 Java Annotations
11-1 Annotation Basics
11-1 1 Annotation Types
11-1 2 Meta-Annotations
11-1 3 Annotation Processing
11-2 Standard Annotations
11-2 1 @Override
11-2 2 @Deprecated
11-2 3 @SuppressWarnings
11-3 Custom Annotations
11-3 1 Annotation Creation
11-3 2 Annotation Usage
12 Java Reflection
12-1 Reflection Basics
12-1 1 Class Class
12-1 2 Field Class
12-1 3 Method Class
12-2 Dynamic Class Loading
12-2 1 ClassLoader Class
12-2 2 Dynamic Proxy
12-3 Reflection API
12-3 1 Accessing Class Members
12-3 2 Modifying Class Members
13 Java Internationalization (I18N)
13-1 I18N Basics
13-1 1 Locale Class
13-1 2 ResourceBundle Class
13-2 Formatting
13-2 1 NumberFormat Class
13-2 2 DateFormat Class
13-2 3 MessageFormat Class
13-3 Character Encoding
13-3 1 Charset Class
13-3 2 String Encoding and Decoding
14 Java Platform Module System (JPMS)
14-1 Module System Overview
14-1 1 Module Declaration
14-1 2 Module Path
14-1 3 Module Dependencies
14-2 Module Resolution
14-2 1 Automatic Modules
14-2 2 Named Modules
14-2 3 Unnamed Modules
14-3 Module Services
14-3 1 Service Provider Interface (SPI)
14-3 2 ServiceLoader Class
15 Java 11 New Features
15-1 New String Methods
15-1 1 isBlank()
15-1 2 lines()
15-1 3 repeat()
15-2 New File Methods
15-2 1 writeString()
15-2 2 readString()
15-3 Local-Variable Syntax for Lambda Parameters
15-3 1 var Keyword in Lambda Expressions
15-4 HTTP Client API
15-4 1 HttpClient Class
15-4 2 HttpRequest Class
15-4 3 HttpResponse Class
15-5 Nest-Based Access Control
15-5 1 Nest Host and Nest Members
15-5 2 Nest Access Control
15-6 Epsilon Garbage Collector
15-6 1 Epsilon GC Overview
15-6 2 Epsilon GC Use Cases
15-7 Flight Recorder
15-7 1 Flight Recorder Overview
15-7 2 Flight Recorder Use Cases
15-8 Application Class-Data Sharing (CDS)
15-8 1 CDS Overview
15-8 2 CDS Use Cases
15-9 Deprecations and Removals
15-9 1 Deprecated Features
15-9 2 Removed Features
1.4.4 Exception Handling Explained

1.4.4 Exception Handling Explained

Exception handling is a crucial aspect of Java programming that allows you to manage errors and unexpected situations gracefully. By understanding exception handling, you can write robust and reliable Java SE 11 applications.

Key Concepts

1. Exceptions

An exception is an event that occurs during the execution of a program, disrupting the normal flow of instructions. Exceptions can be caused by various factors such as invalid input, file not found, or network issues.

2. Exception Hierarchy

Exceptions in Java are organized in a hierarchy, with Throwable as the root class. The Throwable class has two main subclasses: Error and Exception. Errors represent serious problems that a reasonable application should not try to catch, while exceptions represent conditions that a program might want to catch and handle.

3. Checked and Unchecked Exceptions

Exceptions are categorized into two types: checked and unchecked. Checked exceptions are those that must be either caught or declared in the method signature using the throws keyword. Unchecked exceptions, which are subclasses of RuntimeException, do not require explicit handling.

4. Try-Catch Block

The try-catch block is used to handle exceptions. The code that might throw an exception is placed inside the try block, and the catch block contains the code to handle the exception if it occurs.

5. Finally Block

The finally block is used to execute code that must run regardless of whether an exception was thrown or caught. It is often used for cleanup operations such as closing files or releasing resources.

6. Throw and Throws Keywords

The throw keyword is used to manually throw an exception, while the throws keyword is used in a method signature to declare that the method might throw one or more exceptions.

Explanation and Examples

Try-Catch Block Example

Consider the following code snippet:

        try {
            int result = 10 / 0; // This will throw an ArithmeticException
        } catch (ArithmeticException e) {
            System.out.println("An error occurred: " + e.getMessage());
        }
    

In this example, the code inside the try block attempts to divide by zero, which throws an ArithmeticException. The catch block catches this exception and prints an error message.

Finally Block Example

Consider the following code snippet:

        FileInputStream file = null;
        try {
            file = new FileInputStream("file.txt");
            // Code to read from the file
        } catch (FileNotFoundException e) {
            System.out.println("File not found: " + e.getMessage());
        } finally {
            if (file != null) {
                try {
                    file.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    

In this example, the finally block ensures that the file is closed regardless of whether an exception was thrown or caught.

Throw and Throws Example

Consider the following code snippet:

        public void validateAge(int age) throws IllegalArgumentException {
            if (age < 18) {
                throw new IllegalArgumentException("Age must be at least 18");
            }
        }
        
        public static void main(String[] args) {
            try {
                validateAge(15);
            } catch (IllegalArgumentException e) {
                System.out.println(e.getMessage());
            }
        }
    

In this example, the validateAge method throws an IllegalArgumentException if the age is less than 18. The main method catches this exception and prints the error message.

Analogies

Think of exception handling as a safety net in a circus act. Just as a safety net catches a performer if they fall, a try-catch block catches exceptions and prevents the program from crashing. The finally block is like the cleanup crew that ensures the stage is cleared regardless of whether the act was successful or not.

By mastering exception handling, you can create more resilient and user-friendly Java SE 11 applications.